Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов Как происходит заражение ВИЧ


Общие представления о вирусах. Строение вирусов. Классификация вирусов


Используемая в нашем центре Программа лечения хронических вирусных инфекций дает возможность:
  • в короткие сроки подавить активность инфекционного процесса
  • эффективно восстановить иммунную защиту организма
  • снизить дозы противовирусных препаратов и уменьшить токсический эффект этих препаратов на организм пациента
  • повысить чувствительность к традиционным противовирусным препаратам
  • профилактировать рецидив инфекции
Это достигается за счет применения:
  • метода Криомодификации аутоплазмы позволяющего удалить из организма токсические метаболиты микроорганизмов, медиаторы воспаления, циркулирующие иммунные комплексы
  • технологий Инкубации клеточной массы с противовирусными препаратами , обеспечивающих доставку препаратов непосредственно в очаг инфекции
  • технологий Экстракорпоральной иммунофармакотерапии , работающих непосредственно с клетками иммунной системы и позволяющих эффективно и на длительное время повысить противовирусный иммунитет

Вирусные инфекции

Часть VI. Генитальный герпес


Часть VII. Офтальмогерпес


Часть VIII. Опоясывающий лишай


Часть IX. Вирус Эпштейна–Барр


Часть X. Цитомегаловирус


Часть XI. Герпесвирусы человека типов 6, 7 и 8


Часть XII. Вирус папилломы человека


Часть XIII. Лабораторные анализы при диагностике вирусных инфекций


Часть XIV. Лечение вирусных инфекций

Медицинская вирусология

Вирусология – наука о вирусах возникла примерно 100 лет назад, хотя болезни, вызываемые вирусами (поксвирусами и герпесвирусами), известны со времен античности.

В 1892 г. русский микробиолог Ивановский показал, что возбудитель табачной мозаики проходит через керамический фильтр и, следовательно, не относится к бактериям. Эта работа положила начало вирусологии. В течение последующих 20 лет были обнаружены фильтрующиеся возбудители некоторых инфекционных болезней животных, которые получи название – вирусы.

В 1920 – 1950 гг. прогресс вирусологии был связан с развитием методов культивирования вирусов. Для изучения вирусов используют заражение вирусами животных, растений или бактерий.

В 1948 – 1952 гг. был предложен метод культур клеток и тканей, создавший условия для исследования генетики и биохимии вирусов. Вирусы стали рассматривать как генетически простые инструменты для изучения фундаментальных биологических и биохимических процессов, протекающих в живых организмах.

Общие представления о вирусах

Вирусы отличаются от вироидов, вирусоидов и прионов.

  • Вироиды – это лишенные оболочки небольшие молекулы кольцевой, обычно одноцепочечной РНК, вызывающие заболевания у растений
  • Вирусоиды похожи на вироиды, но включены в структуру вируса-помощника и реплицируются только с его помощью
  • Прионы – Основной компонент прионов – аномальная изоформа прионного белка (один из белков ЦНС). Проникновение прионов в клетку приводит к нарушению конформации синтезируемого клеткой прионного белка, нарушению функции клетки и дальнейшему накоплению прионов. Прионы вызывают некоторые дегенеративные заболевания ЦНС – болезнь Крейтцфелъдта–Якоба, куру и болезнь Герстмана–Штросслера. Предполагают также участие прионов в передаче человеку губчатой энцефалопатии крупного рогатого скота

Строение вирусов

Вирусные геномы содержат от нескольких до 200 генов и могут быть представлены:

  1. одноцепочечной вирусной ДНК
  2. двухцепочечной вирусной ДНК
  3. плюс-цепью вирусной РНК
  4. минус-цепью вирусной РНК
  5. сегментированной минус-цепью вирусной РНК
  6. сегментированной двухцепочечной вирусной РНК

Плюс-цепь вирусной РНК – непосредственно служит матрицей для синтеза вирусных белков на рибосомах клетки-хозяина.

Минус-цепь вирусной РНК – служит матрицей для синтеза комплементарной ей цепи, на которой в последующем и синтезируются вирусные белки.

В состав сердцевины вирусов обычно входят белки одного или нескольких типов, связанные с нуклеиновой кислотой. Вирусная нуклеиновая кислота практически всегда окружена белковой оболочкой – капсидом . Поскольку объем информации, закодированной в вирусном геноме, ограничен, капсид вируса , как правило, строится из идентичных субъединиц – капсомеров , которые, в свою очередь, образованы белками одного или нескольких типов. Капсомеры укладываются в капсиды со спиральным или икосаэдрическим типом симметрии.

Вирусные капсиды со спиральным типом симметрии обычно имеют палочковидную или нитевидную форму. В основе капсидов с икосаэдрическим типом симметрии лежит фигура икосаэдра; форма таких вирусных капсидов приближается к сферической. Капсид вместе с находящейся в нем нуклеиновой кислотой называют нуклеокапсидом. Многие патогенные вирусы состоят только из нуклеокапсида; другие, более сложно организованные вирусы содержат еще и внешнюю оболочку.

Внешняя оболочка вирусов образуется из мембраны зараженной клетки; при этом в клеточную мембрану встраиваются вирусные гликопротеиды. Пространство между нуклеокапсидом и внешней оболочкой вируса обычно заполнено белками вирусного матрикса . Разрушение внешней оболочки вируса под действием растворителей и неионных детергентов инактивирует вирусы. Вирусы, состоящие только из нуклеокапсида, обычно более устойчивы. Строение имеющего внешнюю оболочку ДНК-содержащего вируса из семейства герпесвирусов представлено на рисунке 1. Сведения о вирусах, патогенных для человека, собраны в таблице 1, а рисунок 2 демонстрирует относительные размеры и строение этих вирусов.


Рисунок 1 . Строение ДНК-содержащего вируса из семейства герпесвирусов. Вирус имеет внешнюю оболочку. Капсид в форме икосаэдра состоит из 162 капсомеров. Диаметр внешней оболочки вируса – 180 нм, нуклеокапсида – 100 нм.

Классификация патогенных вирусов

В основу классификации вирусов положен тип нуклеиновой кислоты, размер и тип симметрии вирусного нуклеокапсида, наличие или отсутствие внешней оболочки (табл. 1 и рис. 2). Вирусы, принадлежащие к одному семейству, обладают сходным типом генома и сходными морфологическими характеристиками (по данным электронной микроскопии).

При делении вирусов на роды учитывают эпидемиологические и биологические особенности вирусов, а также степень гомологии нуклеотидных последовательностей.

Каждый вирус человека имеет общепринятое название, связанное с его патологическим действием или обстоятельствами открытия, и официальное видовое название, присвоенное Международной комиссией по таксономии вирусов, которое складывается из названия хозяина вируса, семейства или рода, к которому принадлежит вирус, и номера. Поэтому один и тот же вирус может называться по-разному, например вирус varicella-zoster и герпесвирус человека типа 3.

Таблица 1. Патогенные вирусы

Семейство Представители Нуклеиновая кислота Внешняя оболочка
РНК-содержащие вирусы
Пикорнавирусы Вирус полиомиелита Плюс-цепь РНК Нет
Вирусы Коксаки
ЕСНО-вирусы
Риновирусы
Вирус гепатита А
Вирус Норуолк Плюс-цепь РНК Нет
Вирус гепатита Е
Вирус краснухи Плюс-цепь РНК Есть
Вирус восточного энцефаломиелита лошадей
Вирус западного энцефаломиелита лошадей
Флавивирусы Вирус желтой лихорадки Плюс-цепь РНК Есть
Вирусы денге
Вирус энцефалита Сент-Луис
Вирус гепатита С
Вирус гепатита G
Плюс-цепь РНК Есть
Рабдовирусы Вирус бешенства Минус-цепь РНК Есть
Вирус везикулярного стоматита
Филовирусы Вирус Марбург Минус-цепь РНК Есть
Вирусы Эбола
Парамиксовирусы Вирусы парагриппа Минус-цепь РНК Есть
Респираторный синцитиальный вирус
Вирус ньюкаслской болезни
Вирус эпидемического паротита
Вирус кори
Ортомиксовирусы Вирусы гриппа А, В и С Минус-цепь РНК, 8 сегментов Есть
Буньявирусы Хантавирусы Минус-цепь РНК, 3 кольцевых сегмента Есть
Вирус калифорнийского энцефалита
Вирус сицилийской лихорадки
Вирус неаполитанской лихорадки
Аренавирусы Вирус лимфоцитарного хориоменингита Минус-цепь РНК, 2 кольцевых сегмента Есть
Вирус Ласса
Вирусы южноамериканских геморрагических лихорадок
Реовирусы Ротавирусы Двухцепочечная РНК, 10-12 сегментов Нет
Реовирусы
Вирус колорадской клещевой лихорадки
Ретровирусы ВИЧ-1 и ВИЧ-2 Две плюс-цепи РНК Есть
Т-лимфотропные вирусы человека типов 1 и 2
ДНК-содержащие вирусы
Гепаднавирус Вирус гепатита В Частично двухцепочечная ДНК Есть
Парвовирусы Парвовирус В19 Одноцепочечная ДНК Нет
Паповавирусы Вирус папилломы человека Двухцепочечная ДНК Нет
Вирус JC
Вирус BK
Аденовирусы Аденовирусы человека Двухцепочечная ДНК Нет
Герпесвирусы Вирусы простого герпеса типов 1 и 2 1 Двухцепочечная ДНК Есть
Вирус varicella-zoster 2
Вирус Эпштейна-Барр 3
Цитомегаловирус 4
Герпесвирус человека типа 6
Герпесвирус человека типа 7
Герпесвирус человека типа 8
Поксвирусы Вирус натуральной оспы Двухцепочечная ДНК Есть
Вирус контагиозного пустулезного дерматита
Вирус контагиозного моллюска

1 Другое название - герпесвирусы человека типов 1 и 2.

2 Другое название - герпесвирус человека типа 3.

3 Другое название - герпесвирус человека типа 4.

4 Другое название - герпесвирус человека типа 5.

Строение основных вирусов

Рисунок 2 . Строение основных вирусов. Вирусы разделены по типу генома, по семействам и изображены с соблюдением масштаба.
Т. н. – тысяча нуклеотидов.


Пикорнавирусы
Размер генома (т.н.) 7,2 - 8,4 8 12 10 16 - 21
Внешняя оболочка Нет Нет Есть Есть Есть
Тип симметрии капсида Икосаэдрический Икосаэдрический Икосаэдрический Икосаэдрический Икосаэдрический

Геном вирусов содержит один тип нуклеиновой кислоты – ДНК или РНК. Эти нуклеиновые кислоты, как носители генетической информации вирусов, могут быть однонитчатыми или двунитчатыми. Репликация генома вирусов зависит от строения нуклеиновой кислоты, процесс транскрипции осуществляется многочисленными путями.

РНК-овые вирусы могут быть плюс-нитевыми (РНК +) и имнус-нитевыми (РНК -).

Трансляция у плюс-нитевых вирусов (пикорновирусы, флавивирусы и др.) начинается непосредственно с исходной РНК. Процесс трансляции у минус-нитевых вирусов не может осуществляться на прямую. Этим вирусам необходим предварительный синтез комплементарной копии РНК, который осуществляется особым специфическим ферментом (РНК-зависимой РНК-полимеразой).

У РНК-овых двунитчатых вирусов плюс-нить не используется. Эти вирусы в своем жизненном цикле используют минус-цепь РНК, как все минус-нитевые вирусы.

Представители семейства Retroviridae обладают плюс-нитевым вирусным геномом, но не смотря на это генетическая информация у них снаяала переписывается на ДНК, т. е. по РНК вируса образуется комплементарная цепь ДНК. Течение этого процесса реализуется благодаря РНК-зависимой ДНК полимеразы (ревертазы). Образующаяся ДНК интегрирует с геномом клетки. У вирусов семейства Retroviridae транскрипцию встроенной ДНК обеспечивают РНК-полимеразы клеток эукариот.

Подобно бактериям, вирусы подвержены генотипической и фенотипической изменчивости.

При заражении эукариотических клеток ассоциацией вирусов наблюдаются различные типы взаимодействия между ними.

Пересортировка генов связана с перестройкой у вирусов, имеющих сегментированный геном. Так, рекомбинанты вируса гриппа получают при совместном культивировании вирусов с разными генами гемагглютинина и нейтролинидазы. В результате происходит быстрое изменение свойств вирусов и возникает новый тип вируса.

Множественная реактивация возникает при заражении клетки несколькими вирусами с дефективными геномами. Если повреждения генома различны у разных вирусов, то вирус может репродуцироваться, т. е. вирусы с поражением разных генов дополняют друг друга за счет рекомбинации геномов.

Перекрестная реактивация возникает в случае заражения клетки двумя вирусами, у одного из которых геном поврежден, а у другого – полноценный. При такой смешанной инфекции возникает рекомбинация, в результате которой появляются вирионы со свойствами обоих родителей.

Гетерозиготность – это формирование вирусов, содержащих в своем составе два разных генома или один полный геном одного вируса и часть генома другого вируса. Гетерозиготность имеет место при совместном культивировании двух штаммов вируса.

Комплементация – это такое взаимодействие вирусов, когда один их них, или оба, предоставляют друг другу недостающие белки для размножения и развития. Комплементация может активизировать изначально не жизнеспособные вирусы. Примером может служить покрытие дельта-вируса белком вируса генотипа В-Hbs- антигеном.

Фенотипическое смешивание – это процесс при котором геном одного из вирусов оказывается заключенным в капсид другого. Фенотипическое смешивание наблюдают при совместном культивировании вирусов.



Строение и классификация вирусов

Вирусы относятся к царству Vira . Это

    мель­чайшие микробы («фильтрующиеся агенты»),

    не имеющие клеточного строения, белоксинтезирующей системы,

    Они являются автономными генетическими структурами и отличаются осо­бым, разобщенным (дизъюнктивным), спо­собом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кисло­ты вирусов и их белки, затем происходит их сборка в вирусные частицы.

    Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различ­ ной (рис.):

    палочковидной (вирус табач­ной мозаики),

    пулевидной (вирус бешенства),

    сферической (вирусы полиомиелита, ВИЧ),

    ни­тевидной (филовирусы),

    в виде сперматозои­да (многие бактериофаги).

Размеры вирусов определяют:

    с помощью электронной микроскопии,

    методом улырафильтрации через фильтры с известным диаметром пор,

    методом ультрацентрифугирования.

Наиболее мелкими вирусами являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее круп­ным - вирус натуральной оспы (около 350 нм).

Различают ДНК- и РНК-содержащие виру­ сы. Они обычно гаплоидны, т. е. имеют один набор генов. Исключением являются ретро-вирусы, имеющие диплоидный геном. Геном вирусов содержит от шести до нескольких со­тен генов и представлен различными видами нуклеиновых кислот:

    двунитевыми,

    однонитевыми,

    линейными,

    кольцевыми,

    фрагментированными.

Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) гено­ мом. Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

Различают:

    просто устроенные вирусы (на­пример, вирусы полиомиелита, гепатита А) и

    сложно устроенные вирусы (например, виру­сы кори, гриппа, герпеса, коронавирусы).

У просто устроенных вирусов (рис.) нуклеиновая кислота связана с белковой оболоч­кой, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц- капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом и вместе называются нуклеокапсидом.

У сложноустроенных вирусов (рис.) капсид окружен липопротеиновой оболоч­ кой - суперкапсидом, или пеплосом. Оболочка вируса является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопроте иновые «шипы», или «шипики» (пепломеры, или суперкапсидные белки). Под оболочкой некоторых вирусов находится М-белок.

Таким образом, просто устроенные вирусы состоят из нуклеиновой кислоты и капсида. Сложно устроенные вирусы состоят из нукле­иновой кислоты, капсида и липопротеино­вой оболочки.

Вирионы имеют :

    спиральный,

    икосаэдрический (кубический) или сложный тип симметрии кап­сида (нуклеокапсида).

Спиральный тип сим­метрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов). Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеи­новую кислоту (например, у вируса герпеса).

Капсид и оболочка (суперкапсид) защи­щают вирионы от воздействия окружающей среды, обусловливают избирательное взаимо­действие (адсорбцию) с определенными клет­ками, а также антигенные и иммуногенные свойства вирионов.

Внутренние структуры вирусов называют сер­ дцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннего капсида.

В вирусологии используют следующие так­ сономические категории :

    семейство (название оканчивается на viridae ),

    подсемейство (на­звание оканчивается на virinae ),

    род (название оканчивается на virus ).

Однако названия родов и особенно подсемейств даны не для всех ви­русов. Вид вируса не получил биноминального названия, как у бактерий.

В основу классификации вирусов поло­ жены следующие категории:

    тип нуклеино­ вой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особен­ ности воспроизводства вирусного генома (табл. 2.3),

    размер и морфология вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (супер капсида).

    чувствительность к эфиру и дезоксихолату,

    место размножения в клетке,

    антигенные свойства и др.

Вирусы поражают позвоночных и беспозво­ночных животных, а также бактерии и расте­ния. Являясь основными возбудителями ин­фекционных заболеваний человека, они также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирусы краснухи, цитомегалии и др.), поражая плод человека. Они могут приводить и к постинфекционным осложне­ниям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных (канонических) вирусов известны инфекционные молекулы, кото­рые не являются вирусами и называются прионами. Прионы- термин, предложенный С. Прузинером, представляет собой анаграм­му английских слов «инфекционная белковая частица.» Клеточная форма нормального прионового протеина (РгРС) имеется в организме млекопитающих, в том числе человека, и выпол­няет ряд регуляторных функций. Его кодирует PrP-ген, расположенный в коротком плече 20-й хромосомы человека. При прионных болезнях в виде трансмиссивных губкообразных энцефа­лопатии (болезнь Крейтцфельда-Якоба, куру и др.) прионный протеин приобретает другую, инфекционную форму, обозначаемую как РгР & (Sc - от scrapie - скрепи, прионной инфекции овец и коз). Этот инфекционный прионовый протеин имеет вид фибрилл и отличается от нор­мального прионного протеина третичной или четвертичной структурой.

Другими необычными агентами, близкими к вирусам, являются вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие

3.3. Физиология вирусов

Вирусы - облигатные внутриклеточные па­разиты, способные только к внутриклеточно­му размножению. В вирусинфицированной клетке возможно пребывание вирусов в раз­личных состояниях:

    воспроизводство многочисленных новых вирионов;

    пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки (в виде провируса);

    существование в цитоплазме клетки в ви­де кольцевых нуклеиновых кислот, напоми­нающих плазмиды бактерий.

Поэтому диапазон нарушений, вызывае­мых вирусом, весьма широк: от выраженной продуктивной инфекции, завершающейся ги­белью клетки, до продолжительного взаимо­действия вируса с клеткой в виде латентной инфекции или злокачественной трансформа­ции клетки.

Различают три типа взаимодействия вируса с клеткой : продуктивный, абортивный и интегративный.

1. Продуктивный тип - завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

    Абортивный тип - не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

    Интегративный тип, или вирогения -характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

    Репродукция вирусов (продуктивный)

Продуктивный тип взаимодействия виру­ са с клеткой, т. е. репродукция вируса (лат. re - повторение, productio - производство), проходит в 6 стадий:

1) адсорбция вирионов на клетке;

2) проникновение вируса в клетку;

3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса);

4) синтез вирусных компонентов ;

5) формирование ви­рионов;

6) выход вирионов из клетки.

У раз­личных вирусов эти стадии отличаются

Адсорбция вирусов. Первая стадия репродук­ции вирусов - адсорбция, т. е. прикрепление вириона к поверхности клетки. Она протекает в две фазы. Первая фаза - неспецифическая, обусловленная ионным притяжением между вирусом и клеткой, включая и другие механиз­мы. Вторая фаза адсорбции - высокоспецифи­ ческая, обусловленная гомологией, комплемен-тарностью рецепторов чувствительных клеток и «узнающих» их белковых лигандов вирусов. Белки на поверхности вирусов, узнающие спе­цифические клеточные рецепторы и взаимо­действующие с ними, называются прикрепи­ тельными белками (в основном это гликопроте ины) в составе липопротеиновой оболочки.

Специфические рецепторы клеток имеют различную природу, являясь белками, липидами, углеводными компонентами белков, липидов и др. Так, рецепторами для вируса грип­па является сиаловая кислота в составе гли-копротеинов и гликолипидов (ганглиозидов) клеток дыхательных путей. Вирусы бешенства адсорбируются на ацетилхолиновых рецепто­рах нервной ткани, а вирусы иммунодефицита человека - на СО4-рецепторах Т-хелперов, моноцитов и дендритных клеток. На одной клетке находится от десяти до ста тысяч спе­цифических рецепторов, поэтому на ней могут адсорбироваться десятки и сотни вирионов.

Наличие специфических рецепторов лежит в основе избирательности поражения вируса­ми определенных клеток, тканей и органов. Это так называемый тропизм (греч. tropos - поворот, направление). Например, вирусы, репродуцирующиеся преимущественно в клетках печени, называются гепатотропными, в нервных клетках - нейротропными, в иммунокомпетентных клетках - иммунотропными и т. д.

Проникновение вирусов в клетку. Вирусы проникают в клетку путем рецептор-зависи­мого эндоцитоза (виропексиса), или слияния оболочки вируса с клеточной мембраной, или же в результате сочетания этих механизмов.

1 . Рецептор-зависимый эндоцитоз происхо­дит в результате захватывания и поглоще­ния вириона клеткой: клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эн­досомы), содержащей вирус. За счет АТФ-зависимого «протонного» насоса содержимое эндосомы закисляется, что приводит к слия­нию липопротеиновой оболочки сложно ор­ганизованного вируса с мембраной эндосомы и выходу вирусного нуклеокапсида в цитозоль клетки. Эндосомы объединяются с лизосомами, которые разрушают оставшиеся вирусные компоненты. Процесс выхода безоболочечных (просто организованных) вирусов из эн­досомы в цитозоль остается малоизученным.

2. Слияние обточки вириона с клеточной мемб­ раной характерно только для некоторых оболочечных вирусов (парамиксовирусов, ретровиру-сов, герпесвирусов), в составе которых имеются белки слияния. Происходит точечное взаимо­действие вирусного белка слияния с липидами клеточной мембраны, в результате чего вирус­ная липопротеиновая оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса попадает в цитозоль.

А) «Раздевание» (депротеинизация) вирусов. В результате высвобождается его внутренний компонент, способный вызы­вать инфекционный процесс. Первые этапы «раздевания» вируса начинаются в процессе его проникновения в клетку путем слияния вирус­ных и клеточных мембран или же при выходе вируса из эндосомы в цитозоль. Последующие этапы «раздевания» вируса тесно взаимосвя­заны с их внутриклеточным транспортом к местам депротеинизации. Для разных вирусов существуют свои специализированные учас­тки «раздевания» в клетке: для пикорнавирусов- в цитоплазме с участием лизосом, аппарата Гольджи; для герпесвирусов - около­ядерное пространство или поры ядерной мем­браны; для аденовирусов - сначала структуры цитоплазмы, а затем ядро клетки. Конечными продуктами «раздевания» могут быть нуклеи­новая кислота, нуклеопротеин (нуклеокапсид) или сердцевина вириона. Так, конечным продуктом раздевания пикарновирусов является нуклеиновая кислота, ковалентно связанная с одним из внутренних белков. А у многих оболочечных РНК-содержащих вирусов ко­нечными продуктами «раздевания» могут быть нуклеокапсиды или сердцевины, которые не только не препятствуют экспрессии вирусного генома, а, более того, защищают его от кле­точных протеаз и регулируют последующие биосинтетические процессы.

В) Синтез вирусных компонентов. Синтез белков и нуклеиновых кислот вируса, который разобщен во времени и пространстве. Синтез осущест­вляется в разных частях клетки, поэтому такой способ размножения вирусов называется дизъ­ юнктивным (от лат. disjunctus - разобщенный).

С) Синтез вирусных белков . В зараженной клет­ке вирусный геном кодирует синтез двух групп белков:

1. неструктурных белков, обслуживаю­щих внутриклеточную репродукцию вируса на разных его этапах;

2. структурных белков, которые входят в состав вириона (геномные, связанные с геномом вируса, капсидные и су-перкапсидные белки).

К неструктурным бел­ кам относятся: 1) ферменты синтеза РНК или ДНК (РНК- или ДНК-полимеразы), обеспе­чивающие транскрипцию и репликацию ви­русного генома; 2) белки-регуляторы; 3) пред­шественники вирусных белков, отличающиеся своей нестабильностью в результате быстрого нарезания на структурные белки; 4) фермен­ты, модифицирующие вирусные белки, на­пример, протеиназы и протеинкиназы.

Синтез белков в клетке осуществляется в со­ответствии с хорошо известными процессами транскрипции (от лат. transcriptio - переписы­вание) путем «переписывания» генетической информации с нуклеиновой кислоты в нуклео-тидную последовательность информационной РНК (иРНК) и трансляции (от лат. translatio - передача) - считывания иРНК на рибосомах с образованием белков. Передача наследствен­ной информации в отношении синтеза иРНК у разных групп вирусов неодинакова.

I . ДНК-содержашие вирусы реализуют ге­нетическую информацию так же, как и кле­точный геном, по схеме:

геномная ДНК вируса -» транскрипция иРНК -» трансляция белка вируса.

Причем ДНК-содержашие вирусы исполь­зуют для этого процесса клеточную полимеразу (вирусы, геномы которых транскри­бируются в ядре клетки - аденовирусы, па-повавирусы, герпесвирусы) или собственную РНК-полимеразу (вирусы, геномы которых транскрибируются в цитоплазме, например поксвирусы).

II . Плюс-нитевые РНК-содержашие вирусы (например, пикорнавирусы, флавивирусы, тогавирусы) имеют геном, выполняющий функ­цию иРНК; он распознается и транслируется рибосомами. Синтез белков у этих вирусов осу­ществляется без акта транскрипции по схеме:

геномная РНК вируса -> трансляция белка вируса.

III . Геном минус-однонитевых РНК-содержаших вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов) и двунитевых (реовирусов) служит матрицей, с которой транскрибируется иРНК, при участии РНК-полимеразы, связанной с нуклеино­вой кислотой вируса. Синтез белка у них происхо­дит по схеме:

геномная РНК вируса -» транскрипция и-РНК - трансляция белка вируса.

IV . Ретровирусы (вирусы иммунодефицита человека, онкогенные ретровирусы) имеют уникальный путь передачи генетической ин­формации. Геном ретровирусов состоит из двух идентичных молекул РНК, т. е. является диплоидным. В составе ретровирусов есть осо­бый вирусоспецифический фермент - обрат­ная транскриптаза, или ревертаза, с помощью которой осуществляется процесс обратной транскрипции, т. е. на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Комплементарная нить ДНК копируется с образованием двунитевой ком­плементарной ДНК, которая интегрирует в клеточный геном и в его составе транскриби­руется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков для этих вирусов осуществляется по схеме:

геномная РНК вируса -> комплементарная ДНК -» транскрипция иРНК

-»трансляция белка вируса.

Репликация вирусных геномов, т. е. синтез ви­русных нуклеиновых кислот, приводит к на­коплению в клетке копий исходных вирусных геномов, которые используются при сборке вирионов. Способ репликации генома зависит от типа нуклеиновой кислоты вируса, наличия вирусоспецифических или клеточных полимераз, а также от способности вирусов индуцировать образование полимераз в клетке.

Механизм репликации отличается у вирусов, имеющих:

1) двунитевую ДНК;

2) однонитевую ДНК;

3) плюс-однонитевую РНК;

4) минус-одноните-вую РНК;

5) двунитевую РНК;

6) идентичные плюс-нитевые РНК (ретровирусы).

1. Двунитевые ЛНК-вирусы . Репликация двунитевых вирусных ДНК происходит обычным полуконсервативным механизмом: после рас- плетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь син­тезированная молекула ДНК состоит из одной родительской и одной вновь синтезирован­ной нити. К этим вирусам относится большая группа вирусов, которые содержат двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме, как папилломавирусы. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.

Уникальный механизм репликации харак­терен для гепаднавирусов (вируса гепатита В). Геном гепаднавирусов представлен дву-нитевой кольцевой ДНК, одна нить которой короче (неполная плюс-нить) другой нити. Первоначально достраивается (рис. 3.7). Затем полная двунитевая ДНК с помощью клеточ­ной ДНК-зависимой РНК-полимеразы транс­крибируется с образованием небольших моле­кул иРНК и полной однонитевой плюс-РНК. Последняя называется прегеномной РНК; она является матрицей для репликации генома ви­руса. Синтезированные иРНК участвуют в про­цессе трансляции белков, в том числе вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). С помощью этого фермента мигрирующая в цитоплазму прегеномная РНК обратно транскрибируется в минус-нить ДНК, которая, в свою очередь, служит матрицей для синтеза плюс-нити ДНК. Этот процесс за­канчивается образованием двунитевой ДНК, содержащей неполную плюс-нить ДНК.

    Однонитевые ДНК-вирусы . Единствен­ными представителями однонитевых ДНК-вирусов являются парвовирусы. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы послед­ него. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей для синтеза плюс-нити ДНК нового вириона. Параллельно синтезируется иРНК, происхо­дит трансляция вирусных пептидов.

    Плюс-однонитевые РНК-вирусы . Эти виру­сы включают большую группу вирусов - пикорнавирусы, флавивирусы, тогавирусы (рис.3.8), у которых геномная плюс-нить РНК вы­полняет функцию иРНК. Например, РНК полиовирусов после проникновения в клетку связывается с рибосомами, работая как иРНК, и на ее основе синтезируется большой поли­пептид, который расщепляется на фрагменты: РНК-зависимую РНК-полимеразу, вирусные протеазы и капсидные белки. Полимераза на основе геномной плюс-нити РНК синтези­рует минус-нить РНК; формируется времен­но двойная РНК, названная промежуточным репликативным звеном. Это промежуточное репликативное звено состоит из полной плюс-нити РНК и многочисленных частично завер­шенных минус-нитей. Когда образованы все минус-нити, они используются как шаблоны для синтеза новых плюс-нитей РНК. Этот механизм используется как для размножения геномной РНК вируса, так и для синтеза боль­шого количества вирусных белков.

    Минус-однонитевые РНК-вирусы. Минус -однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полиме­разу. Проникшая в клетку геномная минус- нить РНК трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются матрицей (промежуточная стадия) для синтеза минус-нитей геномной РНК потомства

    Двунитевые РНК-вирусы. Механизм реп­ликации этих вирусов (реовирусов и ротави-русов) сходен с репликацией минус-однонитевых РНК-вирусов. Отличие состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они яв­ляются матрицами для синтеза минус-нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоп­лазме клеток.

6 . Ретровирусы (плюс-нитевые диплоидные РНК-содержащие вирусы). Обратная транс-криптаза ретровирусов синтезирует (на матри­це РНК-вируса) минус-нить ДНК, с которой копируется плюс-нить ДНК с образованием двойной нити ДНК, замкнутой в кольцо (рис. 3.10). Далее двойная нить ДНК интегриру­ет с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.

Формирование вирусов. Вирионы формиру­ются путем самосборки: составные части вириона транспортируются в места сборки ви­руса - участки ядра или цитоплазмы клетки. Соединение компонентов вириона обуслов­ лено наличием гидрофобных, ионных, водо­родных связей и стерического соответствия.

Существуют следующие общие принципы сборки вирусов :

Формирование вирусов- многоступенча­тый процесс с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов.

    Сборка просто устроенных вирусов за­ключается во взаимодействии вирусных нук­леиновых кислот с капсидными белками и в образовании нуклеокапсидов.

    У сложноустроенных вирусов сначала фор­мируются нуклеокапсиды, которые взаимо­действуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса).

Причем сборка вирусов, реплициру­ющихся в ядре клетки, происходит с участием мембраны ядра, а сборка вирусов, репликация которых идет в цитоплазме, осуществляется с участием мембран эндоплазматической сети или плазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вируса.

    У ряда сложноустроенных вирусов минус-нитевых РНК-вирусов (ортомиксовирусов, парамиксовирусов) в сборку вовлекается так назы­ваемый матриксный белок (М-белок), который расположен под модифицированной клеточной ембраной. Обладая гидрофобными свойствами, он выполняет роль посредника между нуклеокапсидом и вирусной липопротеиновой оболочкой.

Сложноустроенные вирусы в процессе формирования включают в свой состав неко­торые компоненты клетки хозяина, например липиды и углеводы.

Выход вирусов из клетки. Полный цикл реп­родукции вирусов завершается через 5-6 ч (вирус гриппа и др.) или через несколько су­ток (гепатовирусы, вирус кори и др.). Процесс репродукции вирусов заканчивается выходом их из клетки, который происходит взрывным путем или почкованием, экзоцитозом.

    Взрывной путь: из погибающей клетки одновременно выходит большое количество вирионов. По взрывному пути выходят из клетки просто устроенные вирусы, не имею­щие липопротеиновой оболочки.

    Почкование, экзоцшпт присущи вирусам, имеющим липопротеиновую оболочку, которая является производной от клеточных мембран. Сначала образовавшийся нуклеокапсид или сердцевина вириона транспортируется к кле­точным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида или сердцевины ви­риона с клеточной мембраной начинается вы­пячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. При этом клетка способна длительно сохранять жизнеспособность и про­дуцировать вирусное потомство.

Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану (например, парамиксовирусы, тогавирусы), либо через мембраны эндоплазматической сети с последующим их выходом на поверх­ность клетки (например, буньявирусы).

Вирусы, формирующиеся в ядре клетки (например, герпесвирусы), почкуются в перинуклеарное пространство через модифициро­ванную ядерную мембрану, приобретая таким образом липопротеиновую оболочку. Затем они транспортируются в составе цитоплазма-тических везикул на поверхность клетки.

Вирусы относятся к царству Virae (от лат. virus - «яд»). Это мельчайшие микроорганизмы («фильтрующиеся агенты»), не имеющие клеточного строения, белоксинтезирующей системы, содержащие один тип нуклеиновой кислоты (или ДНК, или рибонуклеиновой кислоты - РНК).

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, вирус иммунодефицита человека - ВИЧ), нитевидной (филовирусы) или в виде сперматозоида (многие бактериофаги - см. главу 3). Наиболее мелкими являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее крупным - вирус натуральной оспы (около 350 нм).

Различают ДНК- и РНК-содержащие вирусы. Геном вирусов содержит от шести до нескольких сотен генов и представлен различными видами нуклеиновых кислот: дву-, однонитевыми, линейными, кольцевыми, фрагментированными. Среди однонитевых РНК-содержащих вирусов различают вирусы с плюс-нитью РНК и вирусы с минус-нитью РНК (полярность РНК). Плюс-нить РНК (позитивная нить) выполняет наследственную (геномную) функцию и функцию матричной, или информационной, РНК (иРНК), являясь матрицей для белкового синтеза на рибосомах инфицированной клетки. Плюс-нить РНК является инфекционной: при введении в чувствительные клетки она способна вызвать инфекционный процесс. Минус-нить (негативная нить) выполняет только наследственную функцию; для синтеза белка на минус-нити РНК синтезируется комплементарная ей нить. У некоторых вирусов РНК-геном содержит плюс- и минус-сегменты РНК.

Простые, или безоболочечные, вирусы капсидом (от лат. capsa - нуклеопротеины, нуклеокапсидом.

Рис. 2.8.

капсомеры, (адсорбции) (лизиса).

Сложные, или оболочечные, вирусы (суперкапсид), гликопротеиновые шипы, или шипики. матриксный белок (М-белок).

Таким образом, простые вирусы сложные

Различают простые вирусы (например, вирусы полиомиелита, гепатита А) и сложные вирусы (например, вирусы кори, гриппа, герпеса).

Простые, или безоболочечные, вирусы (рис. 2.8) имеют только нуклеиновую кислоту, связанную с белковой структурой, называемой капсидом (от лат. capsa - «футляр»). Протеины, связанные с нуклеиновой кислотой, известны как нуклеопротеины, а ассоциация вирусных протеинов капсида вируса с вирусной нуклеиновой кислотой названа нуклеокапсидом.

Рис. 2.8. Строение простых и сложных вирусов с икосаэдрическим капсидом. Внизу справа - сложный вирус со спиральным капсидом

Капсид включает повторяющиеся морфологические субъединицы - капсомеры, скомпанованные из нескольких полипептидов. Капсид защищает нуклеиновую кислоту от деградации. У простых вирусов капсид участвует в прикреплении (адсорбции) к клетке хозяина. Простые вирусы выходят из клетки в результате ее разрушения (лизиса).

Сложные, или оболочечные, вирусы (см. рис. 2.8) кроме капсида имеют мембранную двойную липопротеиновую оболочку (суперкапсид), которая приобретается путем почкования вириона через мембрану клетки, например, через плазматическую мембрану, мембрану ядра или мембрану эндоплазматического ретикулума. На оболочке вируса расположены гликопротеиновые шипы, или шипики. Разрушение оболочки эфиром и другими растворителями инактивирует сложные вирусы. Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

Таким образом, простые вирусы состоят из нуклеиновой кислоты и капсида, а сложные - из нуклеиновой кислоты, капсида и липопротеиновой оболочки.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!