Блок питания компьютера. Характеристики и выбор. Выбираем блок питания для компьютера Блок питания для компьютера параметры

Не секрет, что от правильного выбора блока питания (далее БП), его конструкции и качества сборки зависит работа устройства, на которое он нагружен. Здесь я постараюсь рассказать об основных моментах выбора, расчета, конструирования и применения блоков питания.

1. Выбор блока питания

Первым делом следует четко уяснить, что именно будет подключено к БП. Главным образом нас интересует ток нагрузки. Это будет основным пунктом ТЗ. По этому параметру будет подобрана схема и элементная база. Приведу примеры нагрузок и их средние потребляемые токи

1. Световые эффекты на светодиодах (20-1000мА)

2. Световые эффекты на миниатюрных лампах накаливания (200мА-2А)

3. Световые эффекты на мощных лампах (до 1000А)

4. Миниатюрные полупроводниковые радиоприемники (100-500мА)

5. Портативная аудиотехника (100мА-1А)

6. Автомобильные магнитолы (до 20А)

7. Автомобильные УМЗЧ (по линии 12В до 200А)

8. Стационарные полупроводниковые УМЗЧ (при выходной мощности не выше 1кВт до 40А)

9. Ламповые УМЗЧ (10мА-1А – анод, 200мА-8А – накал)

10. Ламповые КВ трансиверы [выходной каскад в классе С характеризуется наибольшим КПД] (при мощности передатчика до 1кВт, до 5А – анод, до 10А – накал)

11. Полупроводниковые КВ трансиверы, Си-Би (при мощности передатчика до 100Вт, 1 – 5А)

12. Ламповые УКВ радиостанции (при мощности передатчика до 50Вт, до 1А – анод, до 3А - накал)

13. Полупроводниковые УКВ радиостанции (до 5А)

14. Полупроводниковые телевизоры (до 5А)

15. Вычислительная техника, оргтехника, сетевые устройства [концентраторы LAN, точки доступа, модемы, роутеры] (500мА - 30А)

16. Зарядные устройства для АКБ (до 10А)

17. Управляющие блоки бытовой техники (до 1А)

2. Правила безопасности

Не будем забывать, что БП это самый высоковольтный узел в любом устройстве (за исключением разве что телевизора). При чем опасность представляет не только промышленная электросеть (220В). Напряжение в анодных цепях ламповой аппаратуры может достигать десятков и даже сотен (в рентгеновских установках) киловольт (тысяч вольт). Поэтому все высоковольтные участки (включая общий провод) должны быть изолированы от корпуса. Это хорошо знает тот, кто поставив ногу на системный блок трогал батарею. Электрический ток может быть опасен не только для человека и животных, но и для самого устройства. Имеются ввиду пробои и короткие замыкания. Эти явления не только выводят из строя радиокомпоненты, но и весьма пожароопасны. Мне попадались некоторые изолирующие элементы конструкций, которые в следствии подачи высокого напряжения были пробиты и выгорели до угля при чем выгорели не полностью, а каналом. Уголь проводит ток и создает таким образом короткое замыкание (далее КЗ) на корпус. При чем внешне это не видно. Поэтому между двумя проводами, припаянными к плате, должно быть расстояние из расчета примерно 2мм на вольт. Если речь идет о смертельно опасных напряжениях, то в корпусе должны быть предусмотрены микропереключатели, которые автоматически обесточивают прибор при удалении стенки с опасного участка конструкции. Элементы конструкции, которые в процессе работы сильно нагреваются (радиаторы, мощные полупроводниковые и электровакуумные приборы, резисторы мощностью свыше 2Вт) должны быть вынесены с платы (наилучший вариант) или хотя бы приподняты над ней. Так же не допускается касание корпусов разогревающихся радиоэлементов, за исключением тех случаев, когда второй элемент является датчиком температуры первого. Такие элементы не разрешается заливать эпоксидной смолой и другими компаундами. Более того, должен быть обеспечен приток воздуха к участкам с большой рассеиваемой мощностью, а при необходимости и принудительное охлаждение (вплоть до испарительного). Так. Страху нагнал, теперь о работе.

3. Законы Ома и Кирхгофа были и будут основой разработки любого электронного устройства.

3.1. Закон Ома для участка цепи

Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к участку и обратно пропорциональна сопротивлению участка. На этом принципе основана работа всех ограничительных, гасящих и балластных резисторов.

Эта формула хороша тем, что под "U" можно подразумевать как напряжение на нагрузке, так и напряжение на участке цепи, последовательно соединенном с нагрузкой. Например у нас есть лампочка на 12В/20Вт и источник 17В, к которому нам нужно подключить эту лампочку. Нам нужен резистор, который понизит 17В до 12.


Рис.1

Итак, мы знаем что при последовательном соединении элементов напряжения на них могут отличаться, но ток всегда одинаковый на любом участке цепи. Вычислим ток, потребляемый лампочкой:

Значит, через резистор протекает такой же ток. В качестве напряжения берем падение напряжения на гасящем резисторе, ведь это действительно то самое напряжение, которое действует на этом резисторе ()

Из приведенного примера совершенно очевидно, что . Причем это относится не только к резисторам, но и, например, к динамикам, если мы вычисляем какое напряжение нужно подвести к динамику с заданной мощностью и сопротивлением, чтобы он развил эту мощность.

Прежде, чем мы перейдем к нему, нужно четко уяснить физический смысл внутреннего и выходного сопротивлений. Предположим, у нас есть некоторый источник ЭДС. Так вот, внутреннее (выходное) сопротивление это мнимый резистор, включенный последовательно с ним.


Рис.2

Естественно, фактически в источниках тока таких резисторов нет, но у генераторов есть сопротивление обмоток, у розеток – сопротивление проводки, у АКБ – сопротивление электролита и электродов и т.д. Это сопротивление при подключении нагрузки ведет себя именно как последовательно включенный резистор.

Где: ε – ЭДС
I – сила тока
R – сопротивление нагрузки
r – внутреннее сопротивление источника

Из формулы видно, что с возрастанием внутреннего сопротивления уменьшается мощность вследствие просадки во внутреннем сопротивлении. Это видно и из закона Ома для участка цепи.

3.3 Правило Кирхгофа нас будет интересовать только одно: сумма токов, входящих в цепь равна току (сумме токов), выходящему из нее. Т.е. какой бы не была нагрузка и из скольки бы ветвей она не состояла, сила тока в одном из питающих проводов будет равна силе тока во втором проводе. Собственно, этот вывод вполне очевиден, если мы говорим о замкнутой цепи.

С законами протекания тока вроде все ясно. Посмотрим как это выглядит в реальном «железе».

4. Начинка

ВсеБП во многом схожи по схеме и элементной базе. Это вызвано тем, что по большому счету они выполняют одни и те же функции: изменение напряжения (всегда), выпрямление (чаще всего), стабилизация (часто), защита (часто). Теперь рассмотрим способы реализации этих функций.

4.1. Изменение напряжения чаще всего реализуется при помощи различных трансформаторов. Этот вариант наиболее надежен и безопасен. Существуют так же безтрансформаторные БП. В них для понижения напряжения используется емкостное сопротивление конденсатора, включенного последовательно между источником тока и нагрузкой. Выходное напряжение таких БП полностью зависит от тока нагрузки и ее наличия. Даже при кратковременном отключении нагрузки такие БП выходят из строя. Кроме того, они могут только понижать напряжение. Поэтому я не рекомендую такие БП для питания РЭА. Итак, остановимся на трансформаторах. В линейных БП используются трансформаторы на 50Гц (частота промышленной сети). Трансформатор состоит из сердечника, первичной обмотки и нескольких вторичных обмоток. Переменный ток, поступая на первичную обмотку создает в сердечнике магнитный поток. Этот поток, как магнит, наводит ЭДС во вторичных обмотках. Напряжение на вторичных обмотках определяется количеством витков. Отношение количества витков (напряжения) вторичной обмотки к количеству витков (напряжению) первичной обмотки называется коэффициентом трансформации (η). Если η>1 трансформатор называют повышающим, в противном случае – понижающим. Есть трансформаторы у которых η=1. Такие трансформаторы не меняют напряжение и служат только для гальванической развязки цепей (цепи считаются гальванически развязанными, если у них нет непосредственного общего электрического контакта. Хотя токи, протекающие через них, могут действовать друг на друга. Например « Blue Tooth » или лампочка и поднесенная к ней солнечная батарея или ротор и статор электродвигателя или неоновая лампа, поднесенная к антенне передатчика ). Поэтому использовать их в БП нет смысла. Импульсные трансформаторы работают по такому же принципу с той лишь разницей, что на них не подается напряжение непосредственно из розетки. Сначала оно преобразуется в импульсы более высокой частоты (обычно 15-20кГц) и уже эти импульсы подаются на первичную обмотку трансформатора. Частота следования этих импульсов называется частотой преобразования импульсного БП. С возрастанием частоты увеличивается индуктивное сопротивление катушки, поэтому обмотки импульсных трансформаторов содержат меньшее количество витков по сравнению с линейными. Это делает их более компактными и легкими. Однако импульсные БП характеризуются бОльшим уровнем помех, худшим тепловым режимом и схемотехнически более сложны, следовательно менее надежны.

4.2. Выпрямление подразумевает преобразование переменного (импульсного) тока в постоянный. Этот процесс заключается в разложении положительных и отрицательных полуволн на соответствующие полюса. Есть достаточно много схем, позволяющих это сделать. Рассмотрим те, которые наиболее часто используются.

4.2.1. Четвертьмост


Рис.3

Самая простая схема однополупериодного выпрямителя. Работает следующим образом. Положительная полуволна проходит через диод и заряжает С1. Отрицательная полуволна блокируется диодом и цепь оказывается как бы оборванной. В этом случае нагрузка питается за счет разрядки конденсатора. Очевидно, что для работы на 50Гц емкость С1 должна быть сравнительно велика, чтобы обеспечивать низкий уровень пульсаций. Поэтому схема применяется в основном в импульсных БП ввиду более высокой рабочей частоты.

4.2.2 Полумост (удвоитель Латура-Делона-Гренашера)


Рис.4

Принцип работы похож на четвертьмост, только здесь они соединены как бы последовательно. Положительная полуволна проходит через VD1 и заряжает С1. На отрицательной полуволне VD1 закрывается и С1 начинает разряжаться, а отрицательная полуволна проходит через VD2. Таким образом между катодом VD1 и анодом VD2 появляется напряжение, в 2 раза превосходящее напряжение вторичной обмотки трансформатора (рис.4а). Этот принцип можно использовать для построения расщепленного БП. Так называются БП, выдающие 2 одинаковых по модулю, но противоположных по знаку напряжения (рис.4б). Однако не следует забывать, что это 2 соединенных последовательно четвертьмоста и емкости конденсаторов должны быть достаточно велики (из расчета, как минимум, 1000мкФ на 1А потребляемого тока).

4.2.3. Полный мост

Самая распространенная схема выпрямителя имеет наилучшие нагрузочные характеристики при минимальном уровне пульсаций и может применяться как в однополярных (рис.5а), так и в расщепленных БП (рис.5б).


Рис.5

На рис.5в,г показана работа мостового выпрямителя.

Как уже говорилось, различные схемы выпрямителей характеризуют разные значения коэффициента пульсаций. Точный расчет выпрямителя содержит громоздкие вычисления и на практике редко бывает необходим, поэтому ограничимся ориентировочным расчетом, который можно выполнить по таблице

где: U 2 – напряжение вторичной обмотки
I 2 – предельно допустимый ток вторичной обмотки
U обр – Предельно допустимое обратное напряжение диодов (кенотронов, тиристоров, газотронов, игнитронов)
I пр.макс – Предельно допустимый прямой ток диодов (кенотронов, тиристоров, газотронов, игнитронов)
q 0 – коэффициент пульсаций на выходе
U 0 – Выводное напряжение выпрямителя
I 0 – максимальный ток нагрузки

Емкость сглаживающего конденсатора можно вычислить по формуле


где: q – коэффициент пульсаций
m – фазность
f – частота пульсаций
R н – сопротивление нагрузки ()
R ф – сопротивление резистора фильтра (это формула для резистивно-емкостных фильтров, но в качестве резистора можно взять выходное сопротивление выпрямителя [внутреннее сопротивление трансформатора+импеданс вентилей])

4.3. Фильтрация

Пульсации вносят помехи в работу аппарата, который питается от БП. Кроме того, они делают невозможной работу стабилизаторов ввиду того, что в интервалах между полуволнами (абсолютная синусоида) напряжение падает практически до нуля. Рассмотрим некоторые виды сглаживающих фильтров.

4.3.1. Пассивные фильтры могут быть резистивно-емкостными индуктивно-емкостными и комбинированными.


Рис.6

Резистивно-емкостные фильтры (рис.6) характеризуются сравнительно большим падением напряжения. Это связано с применением в них резистора. Поэтому для работы с токами более 500мА такие фильтры не подходят ввиду больших потерь и рассеиваемой мощности. Резистор рассчитывается следующим образом

где: U вып – выходное напряжение выпрямителя
U п – напряжение питания нагрузки
I н – ток нагрузки


Рис.7

Индуктивно-емкостные фильтры характеризуются сравнительно высокой сглаживающей способностью, но уступают другим по массогабаритным параметрам. Основная идея индуктивно – емкостного фильтра в соотношении реактивных сопротивлений его компонентов , т.е. фильтр должен обладать хорошей добротностью. Сам фильтр рассчитывается по следующей формуле

Где: q – коэффициент сглаживания
m – фазность
f – частота
- индуктивность дросселя
– емкость конденсатора.

В любительских условиях вместо дросселя можно использовать первичную обмотку трансформатора (ни того, от которого все питается), а вторичную замкнуть.

4.3.2. Активные фильтры применяются в тех случаях, когда пассивные фильтры не годятся по массогабаритным или температурным параметрам. Дело в том, что, как уже говорилось, чем больше ток нагрузки, тем больше емкость сглаживающих конденсаторов. На практике это вытекает в необходимость применения громоздких электролитических конденсаторов. В активном фильтре используется транзистор в схеме эмиттерного повторителя (каскад с общим коллектором), поэтому сигнал на эмиттере практически повторяет сигнал на базе (рис.8)


Рис.8

Цепь R1C1 рассчитывается как резистивно – емкостной фильтр, только в качестве потребляемого тока берется ток в цепи базы

Однако, как видно из формулы, режим фильтра (в том числе и коэффициент сглаживания) будет зависеть от потребляемого тока, поэтому его лучше зафиксировать (рис.9)


Рис.9

Схема работает при условии, что , при чем выходное напряжение будет составлять примерно 0,98U б в следствии просадки напряжения в повторителе. За сопротивление нагрузки принимаем R2.

4.3.3 Помехозащитные фильтры

Надо сказать, что радиопомехи могут проникать не только из сети в прибор, но и из прибора в сеть. Поэтому оба направления следует защищать от помех. Особенно это касается импульсных БП. Как правило, это сводится к подключению конденсаторов небольшой емкости (0,01 – 1,0мкФ) параллельно цепи, как это показано на рис.10.



Рис.10

Как и в случае со сглаживающими фильтрами, помехозащитные фильтры работают при условии, что емкостное сопротивление конденсаторов на частоте возникновения помехи много меньше сопротивления нагрузки.

Возможно, что помеха возникает ни от спонтанного перепада тока в сети или прибора, а от постоянной «вибрации». Это относится, например, к импульсным БП или передатчикам в телеграфном режиме. В этом случае может потребоваться еще и индукционная развязка (рис.11).


Рис.11

Однако конденсаторы должны быть подобраны так, чтобы не возникал резонанс в обмотках дросселей и трансформаторов.

4.4. Стабилизация

Существует целый ряд устройств, блоков и узлов, которые могут работать только от стабилизированных источников тока. Например генераторы, в которых от напряжения зависит скорость зарядки/разрядки конденсаторов в цепях ОС и, следовательно, частота и форма генерируемого сигнала. Поэтому в БП чаще всего стабилизируют именно выходное напряжение, в то время как ток стабилизируют чаще всего в зарядных устройствах и ИБП, да и то не всегда. Существует достаточно много способов стабилизации напряжения, но на практике чаще всего встречаются параметрические стабилизаторы в том или ином виде. Рассмотрим их работу.

4.4.1. Простейший стабилизатор состоит из стабилитрона и ограничительного резистора (рис.12).


Рис.12

Принцип работы такого стабилизатора основан на изменении падения напряжения в ограничительном резисторе в зависимости от тока. При чем вся схема работает при условии, что
Действительно, если ток, протекающий через нагрузку будет превосходить ток стабилизации, то стабилитрон не сможет обеспечить должный перепад по правилу параллельного соединения

Как видно из формулы, наибольшее влияние на общее сопротивление цепи оказывает наименьшее сопротивление. Дело в том, что с увеличением обратного напряжения растет его обратный ток, поэтому он и удерживает напряжение в определенных рамках (закон Ома для участка цепи).

4.4.2. Эмиттерный повторитель

Тогда что делать, если потребляемый ток должен превосходить ток стабилизации стабилитрона?


Рис.13

На помощь приходит наш старый добрый эмиттерный повторитель прирожденный усилитель по току. В конце концов что такое падение напряжения на 2% по сравнению с приращением тока на 1000%!? Внедряем (рис.13)! Ток вырос примерно в h 21 раз по сравнению со стабилизатором на стабилитроне. На эмиттере буде примерно 0,98U Б

4.4.3. Наращивание напряжения стабилизации

Проблема решена, а как быть если требуется стабилизировать напряжение, скажем, 60В? В этом случае можно соединять стабилитроны последовательно. Таким образом 60В это 6 стабилитронов по 10В или 5 по 12В (рис.14).


Рис.14

Как и для любой последовательной цепи, здесь работает правило

где: - общее напряжение стабилизации цепочки
n – количество стабилитронов в цепи
- напряжение стабилизации каждого стабилитрона.

При чем напряжение стабилизации у стабилитронов может отличаться, но ток стабилизации должен быть одинаковым.

4.4.4. Наращивание тока нагрузки

Таким образом решается вопрос с высоким напряжением. Если требуется повысить нагрузочную способность (предельно допустимый ток нагрузки) используются каскады эмиттерных повторителей, образующие составной транзистор (рис.15).


Рис.15

Параметрический стабилизатор и эмиттерный повторитель рассчитываются так же, как и в предыдущих схемах. R2 включен в схему для стока потенциалов с базы VT2 когда VT1 закрыт, однако должно выполняться условие , где Z VT 1 – импеданс VT1 в открытом состоянии.

4.4.5. Регулировка выходного напряжения

В ряде случаев бывает необходимо подстраивать или регулировать выходное напряжение стабилизатора (рис.16).


Рис.16

В этой схеме нагрузкой считается R2, и ток через стабилитрон должен превосходить ток через R2. Следует помнить, что если напряжение снижено до «0», то на переходе коллектор-база действует полное входное напряжение. Если заявленный режим транзистора не достигает этого напряжения, то транзистор неизбежно выйдет из строя. Так же следует отметить, что на выходе стабилизаторов с эмиттерными повторителями очень опасны конденсаторы большой емкости. Дело в том, что в этом случае транзистор оказывается зажатым между двумя большими емкостями. Если разрядить выходной конденсатор, то сглаживающий конденсатор разрядится через транзистор и транзистор выйдет из строя от перегрузки по току. Если разрядить сглаживающий конденсатор, то на эмиттере напряжение станет выше, чем на коллекторе, что так же неизбежно приведет к пробою транзистора.

4.4.6 Стабилизация тока применяется довольно редко. Например зарядных устройствах для АКБ. Самым простым и надежным способом стабилизировать ток является использование каскада с общей базой и светодиодом в качестве стабилизирующего элемента.


Рис.17

Принцип работы такой схемы весьма прост: при снижении тока через нагрузку уменьшается падение напряжения в каскаде. Таким образом на нагрузке повышается напряжение, а следовательно (по закону Ома) и ток. А вырасти выше нужного предела току не позволяет зафиксированный светодиодом режим базы транзистора, т.е. коэффициент усиления не позволяет выдать такой ток на выходе, ибо транзистор работает в режиме насыщения.

где: R1 – сопротивление резистора R1
U пр.св – прямое напряжение на светодиоде
U БЭ.нас – напряжение между эмиттером и базой в режиме насыщения
I H – необходимый ток нагрузки.

где: R2 – сопротивление резистора R2
Е – входное напряжение стабилизатора
U пр.св – максимальное прямое напряжение светодиода
I пр. max – максимальный прямой ток светодиода.

Импульсные БП будут рассмотрены во второй части статьи.

Блок питания предназначен для снабжения электрическим током всех компонентов компьютера. Он должен быть достаточно мощным и иметь небольшой запас, чтобы компьютер работал стабильно. Кроме того блок питания должен быть качественным, так как от него сильно зависит срок службы всех компонентов компьютера. Сэкономив 10-20$ на покупке качественного блока питания вы рискуете потерять системный блок стоимостью 200-1000$.

Мощность блока питания выбирается исходя из мощности компьютера, которая в основном зависит от энергопотребления процессора и видеокарты. Также нужно, чтобы блок питания имел сертификат хотя бы 80 Plus Standart. Оптимальными по соотношению цена/качество являются блоки питания Chieftec, Zalman и Thermaltake.

Для офисного компьютера (документы, интернет) вполне достаточно блока питания на 400 Вт, берите самый недорогой Chieftec или Zalman, не ошибетесь.
Блок питания Zalman LE II-ZM400

Для мультимедийного компьютера (фильмы, простые игры) и игрового компьютера начального класса (Core i3 или Ryzen 3 + GTX 1050 Ti) подойдет самый недорогой блок питания на 500-550 Вт от тех же Chieftec или Zalman, он будет иметь запас на случай установки более мощной видеокарты.
Блок питания Chieftec GPE-500S

Для игрового ПК среднего класса (Core i5 или Ryzen 5 + GTX 1060/1070 или RTX 2060) подойдет блок питания 600-650 Вт от Chieftec, если будет сертификат 80 Plus Bronze, то хорошо.
Блок питания Chieftec GPE-600S

Для мощного игрового или профессионального компьютера (Core i7 или Ryzen 7 + GTX 1080 или RTX 2070/2080) лучше взять блок питания мощностью 650-700 Вт от Chieftec или Thermaltake с сертификатом 80 Plus Bronze или Gold.
Блок питания Chieftec CPS-650S

2. Блок питания или корпус с блоком питания?

Если вы собираете профессиональный или мощный игровой компьютер, то блок питания рекомендуется выбирать отдельно. Если речь идет об офисном или обычном домашнем компьютере, то можно сэкономить и приобрести хороший корпус в комплекте с блоком питания, о чем речь пойдет .

3. Чем отличается хороший блок питания от плохого

Самые дешевые блоки питания (20-30$) по определению не могут быть хорошими, так как производители в этом случае экономят на всем чем только можно. Такие блоки питания имеют плохие радиаторы и много не распаянных элементов и перемычек на плате.

На этих местах должны быть конденсаторы и дроссели, предназначенные для сглаживания пульсаций напряжения. Именно из-за этих пульсаций происходит преждевременный выход их строя материнской платы, видеокарты, жесткого диска и других компонентов компьютера. Кроме того, такие блоки питания часто имеют маленькие радиаторы, из-за которых происходит перегрев и выход из строя самого блока питания.

Качественный блок питания имеет минимум не распаянных элементов и радиаторы большего размера, что можно заметить по плотности монтажа.

4. Производители блоков питания

Одни из лучших блоков питания производит компания SeaSonic, но они и самые дорогие.

Не так давно расширили ассортимент блоков питания хорошо известные бренды для энтузиастов Corsair и Zalman. Но самые бюджетные их модели имеют довольно слабую начинку.

Одними из лучших по соотношению цена/качество являются блоки питания AeroCool. В плотную к ним подбирается хорошо зарекомендовавший себя производитель кулеров DeepCool. Если вы не хотите переплачивать за дорогой бренд, но при этом получить качественный блок питания, обратите внимание на эти торговые марки.

Компания FSP производит блоки питания под разными брендами. Но дешевые БП под их собственной торговой маркой я бы не рекомендовал, они часто имеют короткие провода и мало разъемов. Топовые блоки питания FSP неплохи, но при этом стоят уже не дешевле именитых брендов.

Из тех брендов, которые известны в более узких кругах, можно отметить очень качественные и дорогие be quiet!, мощные и надежные Enermax, Fractal Design, чуть более дешевые, но качественные Cougar и хорошие, но недорогие HIPER как бюджетный вариант.

5. Мощность блока питания

Мощность – это основная характеристика блока питания. Мощность блока питания рассчитывается как сумма мощности всех компонентов компьютера + 30% (на пиковые нагрузки).

Для офисного компьютера вполне достаточно минимальной мощности блока питания 400 Ватт. Для мультимедийного компьютера (фильмы, простые игры) лучше взять блок питания на 500-550 Ватт, вдруг вы потом захотите поставить видеокарту. Для игрового компьютера с одной видеокартой желательно установить блок питания мощностью 600-650 Ватт. Для мощного игрового компьютера с несколькими видеокартами может потребоваться блок питания мощностью 750 Ватт и более.

5.1. Расчет мощности блока питания

  • Процессор 25-220 Ватт (уточняйте на сайте продавца или производителя)
  • Видеокарта 50-300 Ватт (уточняйте на сайте продавца или производителя)
  • Материнская плата начального класса 50 Ватт, среднего класса 75 Ватт, высокого класса 100 Ватт
  • Жесткий диск 12 Ватт
  • SSD-диск 5 Ватт
  • DVD-привод 35 Ватт
  • Модуль памяти 3 Ватт
  • Вентилятор 6 Ватт

Не забудьте добавить к сумме мощностей всех компонентов 30%, это обезопасит вас от неприятных ситуаций.

5.2. Программа для расчета мощности блока питания

Для более удобного расчета мощности блока питания существует прекрасная программа «Power Supply Calculator». Она также позволяет рассчитать необходимую мощность источника бесперебойного питания (ИБП или UPS).

Программа работает на всех версиях Windows с установленным «Microsoft .NET Framework» версии 3.5 или выше, который обычно уже установлен у большинства пользователей. Скачать программу «Power Supply Calculator» и если понадобится «Microsoft .NET Framework» вы можете в конце статьи в разделе « ».

6. Стандарт ATX

Современные блоки питания имеют стандарт ATX12V. Этот стандарт может быть нескольких версий. Современные блоки питания изготавливаются по стандартам ATX12V 2.3, 2.31, 2.4, которые и рекомендуются к приобретению.

7. Коррекция мощности

Современные блоки питания обладают функцией коррекции мощности (PFC), что позволяет им меньше потреблять энергии и меньше греться. Существует пассивная (PPFC) и активная (APFC) схема коррекции мощности. КПД блоков питания с пассивной коррекцией мощности достигает 70-75%, с активной – 80-95%. Рекомендую приобретать блоки питания с активной коррекцией мощности (APFC).

8. Сертификат 80 PLUS

Качественный блок питания обязательно должен иметь сертификат 80 PLUS. Эти сертификаты бывают разного уровня.

  • Certified, Standard – блоки питания начального класса
  • Bronze, Silver – блоки питания среднего класса
  • Gold – блоки питания высокого класса
  • Platinum, Titanium – топовые блоки питания

Чем выше уровень сертификата, тем выше качество стабилизации напряжения и другие параметры блока питания. Для офисного, мультимедийного или игрового компьютера среднего класса достаточно обычного сертификата. Для мощного игрового или профессионального компьютера желательно брать блок питания с бронзовым или серебряным сертификатом. Для компьютера с несколькими мощными видеокартами – с золотым или платиновым.

9. Размер вентилятора

Некоторые блоки питания все еще оснащаются вентилятором размером 80 мм.

Современный блок питания должен иметь вентилятор размером 120 или 140 мм.

10. Разъемы блока питания

ATX (24-pin) — разъем питания материнской платы. На всех блоках питания есть 1 такой разъем.
CPU (4-pin) — разъем питания процессора. На всех блоках питания есть 1 или 2 таких разъема. Некоторые материнские платы имеют 2 разъема питания процессора, но могут работать и от одного.
SATA (15-pin) — разъем питания жестких дисков и оптических приводов. Желательно, что бы в блоке питания было несколько отдельных шлейфов с такими разъемами, так как одним шлейфом подключить жесткий диск и оптический привод будет проблематично. Поскольку на одном шлейфе может быть 2-3 разъема, блок питания должен иметь 4-6 таких разъемов.
PCI-E (6+2-pin) — разъем питания видеокарты. Мощные видеокарты требуют 2 таких разъема. Для установки двух видеокарт необходимо 4 таких разъема.
Molex (4-pin) — разъем питания устаревших жестких дисков, оптических приводов и некоторых других устройств. В принципе не требуется если у вас нет таких устройств, но все равно присутствует во многих блоках питания. Иногда таким разъемом может подаваться напряжение на подсветку корпуса, вентиляторы, платы расширения.

Floppy (4-pin) — разъем питания дисковода. Сильно устарел, но его все еще можно встретить в блоках питания. Иногда им запитываются некоторые контроллеры (переходники).

Конфигурацию разъемов блоков питания уточняйте на сайте продавца или производителя.

11. Модульные блоки питания

В модульных блоках питания лишние кабели можно отстегнуть и они не будет мешаться в корпусе. Это удобно, но такие блоки питания стоят несколько дороже.

12. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Блоки питания» на сайте продавца.
  2. Выберете рекомендуемых производителей.
  3. Выберете необходимую мощность.
  4. Задайте другие важные для вас параметры: стандарты, сертификаты, разъемы.
  5. Последовательно просматривайте позиции, начиная с более дешевых.
  6. При необходимости уточняйте конфигурацию разъемов и другие недостающие параметры на сайте производителя или другого интернет-магазина.
  7. Покупайте первую подходящую по всем параметрам модель.

Таким образом, вы получите оптимальный по соотношению цена/качество блок питания, удовлетворяющий вашим требованиям за минимально возможную стоимость.

13. Ссылки

Блок питания Corsair CX650M 650W
Блок питания Thermaltake Smart Pro RGB Bronze 650W
Блок питания Zalman ZM600-GVM 600W

Здравствуйте, дорогие друзья. С вами как всегда Артём.

Сегодня поговорим о КПД (коэффициент полезного действия ) блока питания компьютера и о том, почему вам не нужен сверх мощный блока питания.

Что же такое КПД блока питания? Если говорить простым и понятным языком, то это отношение потребляемой энергии (мощности в Ваттах) из розетки, к отдаваемой энергии комплектующим компьютера.

Часть энергии расходуется на работу схемы блока питания, а также на нагрев компонентов во время его работы.

Чем КПД блока питания выше (ближе к 100%), тем меньше он потребляет из розетки, так как меньше энергии теряется на нагрев его компонентов, при работе.

Видео версия статьи:

Давайте рассмотрим простой и очень наглядный пример.

Есть блок питания, с номинальной мощностью в 600 Ватт, а его КПД равен 70%.

Сколько же он будет потреблять из розетки при максимальной нагрузке?

600 Ватт x 100%/70% = 857 Ватт.

То есть такой блок питания при максимальной нагрузке отдаст 600 Ватт комплектующим компьютера, а фактически из розетки будет потреблять на целых 257 Ватт больше!

При более высоком КПД и той же самой мощности блока питания, фактическое потребление из розетки снизится (как и счета за свет).

60-75 процентов – это типичный КПД для блока питания компьютера.

Однако в 2007 году появилась сертификация 80 Plus, которая значительно повысила уровень КПД блоков питания. Изначально никаких дополнительных приставок, Silver, Gold и так далее не было.

Они появились позже, увеличив КПД блока питания на несколько процентов каждый.

80 Plus сертификация проходила только для напряжения питания 115 Вольт. Позже все последующие сертификации избавились от этого недостатка и уже тестировались при напряжении питания 230 Вольт.

На скриншоте вы видите все показатели, для каждой сертификации 80 Plus.

Как видно, максимальный КПД достигается при уровне нагрузки от 50% и падает при 100% нагрузке.

Теперь рассчитаем фактическое потребление из розетки, блока питания мощностью 600 Ватт, при 50% нагрузке от комплектующих компьютера.

705 Ватт 80 Plus Silver

674 Ватта 80 Plus Bronze

652 Ватта 80 Plus Gold

638 Ватт 80 Plus Platinum

625 Ватт 80 Plus Titanium

P.S. Блоки питания с последними двумя стандартами, довольно дороги.

Как правило тут переплачивать нет особого смысла. Это конечно же моё личное мнение. Хотя для мощности свыше 1000 Ватт, эти стандарты будут вполне актуальны.

На специальном сайте, можно посмотреть какие конкретно модели блоков питания прошли сертификацию по стандартам 80 Plus:

Посчитаем на сколько больше лишних Ватт, потребит блок питания за год, с разной сертификацией.

306 Киловатт. Компьютер работает 8 часов вдень, до 50% нагрузки на блок питания, 365 дней. Сертификат 80 Plus Silver, мощность БП 600 Ватт .

(705 Ватт полное потребление. 705 Ватт – 600 Ватт (номинальная отдаваемая мощность) =105 Ватт. 105 Ватт x 8 часов x 365 дней = 306.600 Ватт = 306 Киловатт).

151 Киловатт. Компьютер работает 8 часов вдень, до 50% нагрузки на блок питания, 365 дней. Сертификат 80 Plus Gold, мощность БП 600 Ватт .

(705 Ватт полное потребление. 652 Ватт – 600 Ватт (номинальная отдаваемая мощность) =52 Ватта. 52 Ватта x 8 часов x 365 дней = 151.840 Ватт = 151 Киловатт).

151 Киловатт/365 дней= 25,5 Киловатт в месяц 80 Plus Silver.

306 Киловатт/365 дней = 12,5 Киловатт в месяц 80 Plus Gold.

Таким образом, с блоком питания 80 Plus Gold, можно фактически уменьшить количество лишних потребляемых Ватт в два раза.

Бывает, что люди покупают сверх мощные блоки питания для своих систем. Конечно, запас в процентов 30 нужно иметь, но всё должно быть в разумных пределах.

Ваша система, при максимальной нагрузке (когда вы играете, рендерите видео и так далее), должна нагружать блок питания как минимум на 50%, только при этом блок питания сможет достигнуть максимального уровня КПД и соответственно экономии электроэнергии.

Поэтому не нужно покупать какой нибудь Киловаттник, для системы из GTX 1080 и Core i7 7700K. Мало того, что вы попросту переплачиваете за ненужную избыточную мощность, да ещё и за рост фактического энергопотребления из розетки.

Конечно блок питания не должен иметь слишком маленькую мощность, для системы в нагрузке,но это и не обсуждается.

P.S. Посмотреть сколько же примерно будет потреблять ваша система, можно на сайтах калькуляторах мощности блоков питания.

Я надеюсь, что вам стало понятно, что такое КПД блока питания компьютера и на что оно влияет в конечном итоге.

! Пишите в комментариях, какой блок питания установлен у вас (мощность и сертификация, если есть) и какую систему он питает. Мне будет интересно прочитать.

Если вам понравился видео ролик и статья, то поделитесь ими с друзьями в социальных сетях.

Чем больше у меня читателей и зрителей, тем больше мотивации создавать новый и интересный контент:)

Также не забывайте вступать в группу Вконтакте и подписываться на YouTube канал.

Немаловажным критерием будет и КПД блока питания. Коэффициент полезного действия (КПД) - отношение полезной мощности, выдаваемой блоком питания, к потребляемой им от сети. Если схема блока питания ПКсодержала бы лишь трансформатор, его КПД был бы около 100%.

Рассмотрим пример, когда блок питания (с известным КПД - 80%) обеспечивает на выходе мощность в 400W. Если это число (400) разделить на 80% - получим 500W. А блок питания с теми же характеристиками, но с меньшим КПД (70%), будет потреблять уже 570W.

Но – не надо воспринимать эти цифры «всерьез». Блок питания большую часть времени – нагружен не полностью, например, это значение может быть 200W (потреблять от сети компьютер будет меньше).

Существует организация, в функции которой входит тест блоков питания на соответствие уровню заявленного стандарта КПД. Сертификация 80 Plus, при этом, проводится только для сетей на 115 Вольт (распространенных в США), начиная же с «класса» 80 Plus Bronze, все блоки тестируются для использования в 220В-электросети. Например, если сертификация пройдена в классе 80 Plus Bronze, КПД блока питания составляет 85% при «половинной» загрузке по мощности, и 81% - при заявленной мощности.

Наличие логотипа на блоке питания говорит, что товар соответствует уровню сертификации.

Плюсы высокого КПД: меньше энергии отводится «в виде тепла», и система охлаждения, соответственно, будет менее шумной. Во-вторых – очевидна экономия электричества (хотя и, не очень большая). Качество у «сертифицированных» БП, как правило, высокое.

Активный или пассивный pfc?

Power Factor Correction (PFC) – коррекция коэффициента мощности. Power Factor - отношение активной мощности к полной (активной плюс реактивной).

Нагрузкой же, реактивная мощность не потребляется – она на 100% отдается обратно в сеть, на следующем полупериоде. Однако, с ростом реактивной мощности, растет максимальное (за период) значение силы тока.

Слишком большая сила тока в проводах 220В – хорошо ли это? Наверное, нет. Поэтому, с реактивной мощностью по возможности борются (особенно это актуально для действительно мощных устройств, «переходящих» предел в 300-400 Ватт).

PFC – может быть пассивным или активным.

Преимущества активного метода:

Обеспечивается близкий к идеальному значению Power Factor (коэффициент мощности), вплоть до значения, близкого к 1. При PF=1, сила тока в проводе 220В не превысит значение «мощность делить на 220» (в случае меньших значений PF, сила тока – всегда несколько больше).

Недостатки активного PFC:

Повышается сложность – снижается общая надежность блока питания. Самой системе активного PFC - требуется охлаждение. Кроме того, не рекомендуют использовать системы активной коррекции с автовольтажем совместно с источниками ИБП (UPS).

Преимущества пассивной PFC:

Отсутствуют недостатки активного метода.

Недостатки:

Система – малоэффективна при больших значениях мощности.

Что именно выбрать? В любом случае, приобретая БП меньшей мощности (до 400-450W), в нем чаще всего вы обнаружите PFC пассивной системы, а более мощные блоки, от 600 W – чаще встречаются с активной коррекцией.

ОХЛАЖДЕНИЕ БЛОКА ПИТАНИЯ

Системный блок предусматривает установку БП вверху корпуса – тогда, выбирайте любую модель с горизонтально расположенным вентилятором. Больше диаметр – меньше шум (c одинаковой мощностью охлаждения).

Скорость вращения должна меняться в зависимости от внутренней температуры. Когда БП не перегревается – зачем нужно крутить «вентиль» на всех оборотах, и досаждать пользователю шумом? Существуют модели БП, полностью останавливающие свой вентилятор при потребляемой мощности менее 1/3 расчетной. Что - удобно.

Главное в системе охлаждения БП – это ее тишина (или – полное отсутствие вентилятора, такое тоже встречается). С другой стороны, охлаждение нужно затем, чтобы не допустить перегрева деталей (высокая мощность, в любом случае, влечет тепловыделение). На больших мощностях, без вентилятора – не обойтись.

Примечание: на фото – результат моддинга (удаление стандартной решетки-прорези, установка вентилятора Noktua и гриля 120 мм).

Блок питания - это важнейший компонент любого персонального компьютера, от которого зависит надежность и стабильность вашей сборки. На рынке довольно большой выбор продукции от различных производителей. У каждого из них по две-три линейки и больше, которые включают в себя еще и с десяток моделей, что серьезно запутывает покупателей. Многие не уделяют этому вопросу должного внимания, из-за чего часто переплачивают за избыточную мощность и ненужные "навороты". В этой статье мы разберемся, какой же блок питания подойдет для вашего ПК лучше всего?

Блок питания (далее по тексту БП), это прибор, преобразующий высокое напряжение 220 В из розетки в удобоваримые для компьютера значения и оснащенный необходимым набором разъемов для подключения комплектующих. Вроде бы ничего сложного, но открыв каталог , покупатель сталкивается с огромным числом различных моделей с кучей зачастую непонятных характеристик. Прежде, чем говорить о выборе конкретных моделей, разберем, какие характеристики являются ключевыми и на что стоит обращать внимание в первую очередь.

Основные параметры.

1. Форм-фактор . Для того, чтобы блок питания банально поместился в ваш корпус, вы должны определиться с форм-факторов, исходя из параметров самого корпуса системного блока . От форм-фактор зависят габариты БП по ширине, высоте и глубине. Большинство идут в форм-факторе ATX, для стандартных корпусов . В небольших системных блоков стандарта microATX, FlexATX, десктопов и других, устанавливаются блоки меньших размеров, такие как SFX , Flex-ATX и TFX .

Необходимый форм-фактор прописан в характеристиках корпуса, и именно по нему нужно ориентироваться при выборе БП.

2. Мощность. От мощности зависит, какие комплектующие вы сможете установить в ваш компьютер, и в каком количестве.
Важно знать! Цифра на блоке питания, это суммарная мощность по всем его линиям напряжений. Так как в компьютере основными потребителями электроэнергии являются центральный процессор и видеокарта, то основная питающая линия, это 12 В, когда есть еще 3,3 В и 5 В для питания некоторых узлов материнской платы, комплектующих в слотах расширения, питание накопителей и USB портов. Энергопотребление любого компьютера по линиям 3,3 и 5 В незначительно, по этому при выборе блока питания по мощности нужно всегда смотреть на характеристику "мощность по линии 12 В ", которая в идеале должна быть максимально приближена к суммарной мощности.

3. Разъемы для подключения комплектующих , от количества и набора которых зависит, сможете ли вы, к примеру, запитать многопроцессорную конфигурацию, подключить парочку или больше видеокарт, установить с десяток жестких дисков и так далее.
Основные разъемы, кроме ATX 24 pin , это:

Для питания процессора - это 4 pin или 8 pin коннекторы (последний может быть разборным и иметь запись 4+4 pin).

Для питания видеокарты - 6 pin или 8 pin коннекторы (8 pin чаще всего разборный и обозначается 6+2 pin).

Для подключения накопителей 15-pin SATA

Дополнительные:

4pin типа MOLEX для подключения устаревших HDD с IDE интерфейсом, аналогичных дисковых приводов и различных опциональных комплектующих, таких как реобасы, вентиляторы и прочее.

4-pin Floppy - для подключения дискетных приводов. Большая редкость в наши дни, поэтому такие разъемы чаще всего идут в виде переходников с MOLEX.

Дополнительные параметры

Дополнительные характеристики не так критичны, как основные, в вопросе: "Заработает ли этот БП с моим ПК?", но они так же являются ключевыми при выборе, т.к. влияют на эффективность блока, его уровень шума и удобство в подключении.

1. Сертификат 80 PLUS определяет эффективность работы БП, его КПД (коэффициент полезного действия). Список сертификатов 80 PLUS:

Их можно разделить на базовый 80 PLUS, крайний слева (белый), и цветные 80 PLUS, начиная от Bronze и заканчивая топовым Titanium.
Что такое КПД? Допустим, мы имеем дело с блоком, КПД которого 80% при максимальной нагрузке. Это означает, что на максимальной мощности БП будет потреблять из розетки на 20% больше энергии, и вся эта энергия будет преобразована в тепло.
Запомните одно простое правило: чем выше в иерархии сертификат 80 PLUS, тем выше КПД, а значит он будет меньше потреблять лишней электроэнергии, меньше греться, и, зачастую, меньше шуметь.
Для того, чтобы достичь наилучших показатель в КПД и получить "цветной" сертификат 80 PLUS, особенно высшего уровня, производители применяют весь свой арсенал технологий, наиболее эффективную схемотехнику и полупроводниковые компоненты с максимально низкими потерями. Поэтому значок 80 PLUS на корпусе говорит еще и о высокой надежности, долговечности блока питания, а так же серьезном подходе к созданию продукта в целом.

2. Тип системы охлаждения. Низкий уровень тепловыделения блоков питания с высоким КПД, позволяет применять бесшумные системы охлаждения. Это пассивные (где нет вентилятора вообще) , либо полупассивные системы , в которых вентилятор не вращается на небольших мощностях, и начинает работать, когда БП становится "жарко" в нагрузке.

При подборе БП стоит обратить внимание и на длину кабелей, основного ATX24 pin и кабеля питания CPU при установки в корпус с нижним расположением блока питания.

Для оптимальной прокладки питающих проводов за задней стенкой, они должны быть длиной как минимум от 60-65 см , в зависимости от размеров корпуса. Обязательно учтите этот момент, чтобы потом не возиться с удлинителями.
На количество MOLEX нужно обращаться внимание только если вы ищете замену для своего старого и допотопного системного блока с IDE накопителями и приводами, да еще и в солидном количестве, ведь даже у самых простых БП есть минимум пара-тройка стареньких MOLEX, а в более дорогих моделях их вообще десятки.

Надеюсь этот небольшой путеводитель по каталогу компании DNS поможет вам в столь сложном вопросе на начальном этапе вашего знакомства с блоками питания. Удачных покупок!

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!